EMS FOR STROKE THE FIRST LINE OF DEFENSE
INTRODUCTION

This presentation aims to supplement and enhance prehospital stroke management techniques for Emergency Medical Services (EMS) professionals.

It is organized into 3 chapters and includes an appendix with additional information. Each chapter ends with a case study that you can use to test yourself on the information covered in that chapter.
AT THE END OF THIS PRESENTATION, **YOU WILL BE ABLE TO:**

- Describe the importance of recognizing stroke urgently and acting quickly
- Detail the role of EMS in prehospital stroke management
- Describe the importance of timely arrival
- Distinguish between the types of stroke centers
- Describe the impact of stroke disability on patients and their families
- Utilize materials to spread stroke awareness
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER 1</th>
<th>CHAPTER 2</th>
<th>CHAPTER 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>What Is Stroke?</td>
<td>The Role of EMS</td>
<td>Consequences of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke: Disability</td>
</tr>
</tbody>
</table>

CHAPTER 1

What Is Stroke?

Learning Objectives for This Chapter

- Understand the incidence and impact of stroke
- Describe 2 types of stroke
- Identify stroke symptoms
STROKE: A MAJOR CAUSE OF MORBIDITY AND MORTALITY IN THE US\(^1\)

- Strikes about 795,000 people a year\(^1\)
- Leads to over 142,000 deaths a year\(^1\)
- Leading cause of serious, long-term disability\(^1\)
- Occurs on average every 40 seconds\(^1\)
- Results in death on average every 4 minutes\(^1\)
- Cost projected to more than double between 2015 and 2035\(^1\)

STROKE IS THE FIFTH LEADING CAUSE OF DEATH IN THE US

<table>
<thead>
<tr>
<th>Cause</th>
<th>Deaths 2014</th>
<th>Deaths 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart disease*</td>
<td>167.0</td>
<td>168.5*</td>
</tr>
<tr>
<td>Cancer</td>
<td>161.2</td>
<td>158.2*</td>
</tr>
<tr>
<td>Chronic lower respiratory disease</td>
<td>40.5</td>
<td>41.6*</td>
</tr>
<tr>
<td>Unintentional injuries*</td>
<td>40.5</td>
<td>43.2*</td>
</tr>
<tr>
<td>Stroke*</td>
<td>37.6*</td>
<td>36.5</td>
</tr>
<tr>
<td>Alzheimer’s disease</td>
<td>29.4*</td>
<td>25.4</td>
</tr>
<tr>
<td>Diabetes</td>
<td>21.3*</td>
<td>20.9</td>
</tr>
<tr>
<td>Influenza and pneumonia</td>
<td>15.2</td>
<td>15.1</td>
</tr>
<tr>
<td>Kidney disease</td>
<td>13.4*</td>
<td>13.2</td>
</tr>
<tr>
<td>Suicide</td>
<td>13.3*</td>
<td>13.0</td>
</tr>
</tbody>
</table>

*EMS has a direct effect in these cases.
*Statistically significant increase in age-adjusted death rate from 2014 to 2015 (P < 0.05).
*Statistically significant decrease in age-adjusted death rate from 2014 to 2015 (P < 0.05).
STROKE PREVALENCE BY RACE/ETHNICITY

The risk of stroke varies with race and ethnicity

ANNUAL AGE-ADJUSTED INCIDENCE OF FIRST ISCHEMIC STROKE

- Blacks have more than double the incidence of first ischemic stroke and are more likely to die from stroke than any other racial/ethnic group.
- Hispanics have a high incidence of first stroke compared with whites.

STROKE PREVALENCE BY SEX

Stroke affects men and women differently

TOTAL STROKE DEATHS

- In 2016, 82,787 women and 59,355 men died due to stroke

PREVALENCE BY SEX

- Each year, approximately 55,000 more women than men have a stroke

STROKE PREVALENCE BY AGE

The incidence of stroke in younger people is increasing.

PEOPLE HOSPITALIZED FOR STROKE

- In 2009, over one-third of people hospitalized for stroke were under the age of 65.

PREVALENCE OF ACUTE ISCHEMIC STROKE IN PEOPLE UNDER 65

- The acute ischemic stroke hospitalization rate in people under 65 has increased over time.
- The number of people 18 to 64 years old who have had a stroke is predicted to increase over time.

*Weighted numbers of reported strokes from the Healthcare Cost and Utilization Project dataset; adapted from George MG, et al. JAMA Neurol. 2017;74(6):695-703.

TYPES OF STROKE1-4

ISCHEMIC STROKE
Fatty plaque or a clot blocks blood flow, starving cells of oxygen4
- 87% of strokes are ischemic4

HEMORRHAGIC STROKE
A blood vessel leaks or breaks4
- 13% of strokes are hemorrhagic4

Stroke management varies depending on both the severity and the type of stroke.2

GOAL FOR ISCHEMIC STROKE: SAVE THE PENUMBRA

The penumbra is an area of potentially salvageable tissue beyond the blood-starved infarct\(^1,2\)

- The infarct expands in the penumbra over time, increasing the area of irreversible brain damage\(^3\)
- The average stroke patient can lose tens of thousands of brain cells every second\(^4\)

Penumbra
- Potentially salvageable tissue around the infarct
- Supported by collateral blood flow\(^1,2\)

Area of infarct
- Permanently damaged by lack of blood flow\(^1\)

As the infarction expands, the area of irreversible brain damage increases—**TIME IS BRAIN.**\(^3\)

IDENTIFYING STROKE1,2

Stroke presents in many ways, with varying intensity

Common signs and symptoms of stroke appear suddenly1,2:

- Numbness or weakness of the face, arm, or leg
- Confusion, trouble speaking or understanding
- Trouble seeing with one or both eyes
- Trouble walking, dizziness/vertigo, loss of balance or coordination
- Sudden severe headache with no known cause

Other symptoms2:

- Respiratory abnormalities
- Difficulty swallowing
- Nausea and vomiting

How can EMS professionals help educate the public on these stroke symptoms?

SUMMARY1-7

Stroke facts:

✓ Stroke is the fifth leading cause of death in the United States1
✓ Approximately 87\% of strokes are ischemic; 13\% of strokes are hemorrhagic2
✓ Stroke presents in many ways with variable intensities3
✓ Stroke is a major cause of morbidity and mortality in the United States4
✓ The penumbra is the tissue surrounding an infarction that can be either irreversibly damaged or potentially salvaged, depending on time to treatment5-7

TEST YOURSELF!

Scenario: A 65-year-old woman collapses at a shopping mall
YOU ARRIVE ON THE SCENE

• The 65-year-old woman is confused but can respond to your questions
• She can move her right arm and leg slightly, but with great difficulty
• She feels pulsating and throbbing pain on one side of her head
• Her speech is slurred
• Her mouth is dry
• All of these signs and symptoms began in the last half hour

What tells you this might be a stroke?
CHAPTER 2

The Role of EMS

LEARNING OBJECTIVES FOR THIS CHAPTER

- Understand AHA/ASA Guidelines for EMS management of stroke
- Discuss continuous quality improvement as well as the role of EMS professionals in carrying out best practices for stroke care
- Identify 4 levels of hospitals that can treat stroke
THE ROLE OF EMS IN THE MANAGEMENT OF ACUTE STROKE¹*

Prehospital notification

EMS personnel should provide prehospital notification to the receiving hospital that a suspected stroke patient is en route so that the appropriate hospital resources may be mobilized before patient arrival. (Class 1; Level of Evidence B-NR).¹

– AHA/ASA 2018 Guidelines

En route, EMS should inform the hospital of²:

- Time of stroke symptom onset or time patient was last seen normal
- Patient’s medical history
- Medication patient is currently taking

How often do you prenotify a hospital in case of suspected stroke? What are the challenges of prenotification?

*Emergency medical personnel should first follow their institution’s protocols and processes.
AHA = American Heart Association; ASA = American Stroke Association.
ON SCENE*

EMS guidelines for management of patients with suspected stroke1,2

- Manage CABs (chest compression-airway-breathing); give oxygen if needed
- Perform prehospital stroke assessment
- Establish and record exact time patient was last seen normal
- If possible, bring a witness to the hospital; alternatively, record name and phone number (preferably cell phone number) of the witness
- Medical history:
 - Identify current medications taken by patient, especially any anticoagulants (aspirin, warfarin, etc)
 - Record recent illnesses, surgery, or trauma and any history of stroke, drug abuse, migraine, infection, and/or pregnancy

*Emergency medical personnel should first follow their institution’s protocols and processes.

PREHOSPITAL STROKE ASSESSMENT TOOLS

Enable identification and prioritization of stroke patients\(^1\,^2\)

- Formal stroke assessment tools can increase paramedic sensitivity to stroke identification to \(\geq 90\%\)
- Frequently used screening tools include*
 - Cincinnati Prehospital Stroke Severity Scale
 - Los Angeles Prehospital Stroke Screen (LAPSS)

*State or local regulations may specify which scale to use.

PREHOSPITAL STROKE EMERGENT LARGE VESSEL OCCLUSION (ELVO) SCALES

What scale does your system use?

<table>
<thead>
<tr>
<th>Prehospital Stroke Scale</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cincinnati Prehospital Stroke Severity Scale (CPSSS)</td>
<td>83%</td>
<td>40%</td>
</tr>
<tr>
<td>3-item stroke scale (3l-SS)</td>
<td>67%</td>
<td>92%</td>
</tr>
<tr>
<td>Los Angeles Motor Scale (LAMS)</td>
<td>81%</td>
<td>89%</td>
</tr>
<tr>
<td>Legs, eyes, gaze, speech (LEGS)</td>
<td>69%</td>
<td>81%</td>
</tr>
<tr>
<td>Rapid Arterial Occlusion Evaluation Scale (RACE)</td>
<td>85%</td>
<td>68%</td>
</tr>
<tr>
<td>Severe hemiparesis</td>
<td>27%-48%</td>
<td></td>
</tr>
<tr>
<td>Vision, aphasia, neglect (VAN)</td>
<td>100%</td>
<td>90%</td>
</tr>
</tbody>
</table>

TYPES OF STROKE CENTERS¹²

CERTIFIED COMPREHENSIVE STROKE CENTERS (CSCs)
For multifaceted 24/7 stroke care

CERTIFIED PRIMARY STROKE CENTERS (PSCs)
For rapid, uniform, evidence-based care for stroke patients

ACUTE STROKE-READY HOSPITALS (ASRHs)
For effective diagnosis and treatment of most stroke patients, without fully organized inpatient systems of care

THROMBECTOMY-CAPABLE STROKE CENTERS (TSC)
For performing endovascular thrombectomy (EVT) and caring for patients after the procedure

Stroke Center Capabilities

What should you expect from your certified centers?

<table>
<thead>
<tr>
<th>Treatment Capabilities</th>
<th>Primary Stroke Centers (PSCs)</th>
<th>Comprehensive Stroke Centers (CSCs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Capabilities</td>
<td>IV thrombolytics and medical management of stroke</td>
<td>IV thrombolytics; endovascular therapy</td>
</tr>
<tr>
<td>Stroke Unit</td>
<td>Stroke unit of designated beds for the acute care of stroke patients</td>
<td>Dedicated neuro intensive care beds for complex stroke patients available 24/7; on-site neurointensivist coverage 24/7</td>
</tr>
<tr>
<td>Guidelines</td>
<td>Recommendations from Brain Attack Coalition for Primary Stroke Centers, 2011</td>
<td>Recommendations from Brain Attack Coalition for Comprehensive Stroke Centers, 2005</td>
</tr>
<tr>
<td>Neurosurgical Services</td>
<td>Within 2 hours; OR is available 24/7 in PSCs providing neurosurgical services</td>
<td>24/7 availability; neurointerventionist; neuroradiologist; neurologist; neurosurgeon</td>
</tr>
<tr>
<td>EMS Collaboration</td>
<td>Access to protocols used by EMS</td>
<td>Access to protocols used by EMS, routing plans; records from transfer</td>
</tr>
</tbody>
</table>

EMS = emergency medical services; OR = operating room.

What should you expect from your certified centers?

<table>
<thead>
<tr>
<th></th>
<th>Acute Stroke-Ready Hospitals (ASRHs)</th>
<th>Thrombectomy-Capable Stroke Center (TSC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Capabilities</td>
<td>IV thrombolysis: Anticipate transfer of patients who have received IV thrombolysis</td>
<td>IV thrombolysis; mechanical thrombectomy, IA thrombolysis</td>
</tr>
<tr>
<td>Stroke Unit</td>
<td>No designated beds for acute care of stroke patients</td>
<td>Dedicated neuro intensive care beds for complex stroke patients available 24/7; on-site critical care coverage 24/7</td>
</tr>
<tr>
<td>Neurosurgical Services</td>
<td>Within 3 hours (provided through transferring the patient)</td>
<td>Within 2 hours; OR is available 24/7 in TSCs providing neurosurgical services</td>
</tr>
<tr>
<td>EMS Collaboration</td>
<td>Access to protocols used by EMS</td>
<td>Access to protocols used by EMS, routing plans; records from transfer</td>
</tr>
</tbody>
</table>

AHA = American Heart Association; ASA = American Stroke Association; EMS = emergency medical services; OR = operating room.

STROKE CENTERS: BYPASS REQUIREMENTS1,2

2018 guidelines suggest when hospital bypass is appropriate*

Patients with a positive stroke screen and/or a strong suspicion of stroke should be transported rapidly to the closest healthcare facilities that can capably administer IV alteplase. (Class 1, Level of Evidence B-NR).1

1 AHA/ASA 2018 Guidelines

- If large vessel occlusion (LVO) is suspected, patients should be routed to the closest certified center regardless of interventional capability, unless transport to a comprehensive center adds less than 15 minutes2

*State or local stroke systems of care may have specific EMS routing protocols.

AHA = American Heart Association; ASA = American Stroke Association; CSC = comprehensive stroke center; PSC = primary stroke center.

CARE EN ROUTE¹,²,*

- Provide supplemental oxygen to maintain oxygen saturation >94%²
- Monitor blood pressure (BP), but do not treat arterial hypertension.² The benefit of prehospital BP intervention is not proven
- Check and record blood glucose to assess for hypoglycemia and manage appropriately²
- Hypoglycemia is frequently found in patients with stroke-like symptoms¹
 - Hypoglycemia can be corrected rapidly in most patients with 50% dextrose
 - Do not administer dextrose in nonhypoglycemic patients
- Establish cardiac monitoring and intravenous (IV) access, if possible²

*Emergency medical personnel should first follow their institution’s protocols and processes.

EMS FEEDBACK LOOP\(^1\)

Results from a survey of regional EMS providers prompted the creation of 24-hour progress reports from stroke team members to EMS in that region, leading to\(^1\):

- Improved stroke patient transport rates from 47% to 68%
- Increased EMS provider satisfaction

Feedback can be in the form of:

- Individual patient reports to EMS teams
- Trend reports of patients over time

Consider asking your stroke centers for these trends over time:

- Type of dispatched call, ambulance notification, on-scene arrival, and departure times
- Documented prenotification to ED by EMS and last seen normal by EMS
- Documented prehospital neurological exam, blood pressure, and finger stick
- Trip sheet in electronic medical record
- Diagnosis, interventions, course of stay discharge

ED = emergency department.

SUMMARY1-4

EMR responsibilities1-4

✓ Performance of stroke assessment measures and rapid transport to closest appropriate facility capable of treating stroke
✓ Management of CABs
✓ Acquisition of history of event, preferably with assistance of a witness
✓ Establish cardiac monitoring and IV access, if possible
✓ Provide rapid transport to closest appropriate stroke center
✓ Provide prehospital notification that a potential stroke patient is en route
✓ Present patient to the ED

Systems of care can improve patient outcomes1-6

✓ Recommendations provide that suspected stroke patients be taken to CSCs, if possible
 • Prehospital notification is critical
 • Quality improvement initiatives should include EMS feedback

CAB = chest compression–airway–breathing; CSCs = comprehensive stroke centers; ED = emergency department.

TEST YOURSELF!

Scenario: A 65-year-old woman collapses at a shopping mall

You determine the woman has suffered a stroke.
WHAT ARE THE STEPS YOU TAKE IN YOUR LIMITED TIME?

Your patient must be taken to the hospital.

There is a comprehensive stroke center 9 miles away and an acute stroke-ready hospital 4 miles away. Where do you take your patient?
CHAPTER 3

Consequences of Stroke: Disability

LEARNING OBJECTIVES FOR THIS CHAPTER

- Disability due to stroke deficit can have lasting effects on patients and their caregivers
- EMS professionals can play a significant role in educating about stroke recognition and the urgency of prompt treatment
STROKE IS ONE OF THE LEADING CAUSES OF **LONG-TERM DISABILITY IN THE US** \(^1,2\)

Even an isolated deficit can lead to disability and can have a lasting impact\(^3\)

Disability is defined as a “yes” response to at least one of the following limitation categories\(^2\):

- Use of an assistive device (cane, crutches, walker, or wheelchair)
- Difficulty performing activities of daily living (ADLs), instrumental activities of daily living (IADLs), or specified functional activities
- One or more selected impairments
- Limitation in the ability to work around the house or at a job or business

EFFECTS OF DISABILITY: MANY PATIENTS REQUIRE ONGOING SUPPORT1-3

The National Stroke Association estimates that there are about 7,000,000 stroke survivors over the age of 20 in the US1

- Many ischemic stroke patients require ongoing support1,2
- Some at-risk patients view severe loss of motor functions as worse than death4
- Higher levels of disability have been associated with earlier mortality2

In 2 separate studies:

\begin{center}
\begin{tabular}{|c|c|}
\hline
\textbf{At 6 months}2 & \textbf{At 1 year}3 \\
\hline
\textbf{45\%} of ischemic stroke patients were functionally dependent* & \textbf{50\%}† of patients with a cerebral infarct had a disability‡ \\
\textit{(N = 7,710)} & \textit{(N = 92)}§ \\
\hline
\end{tabular}
\end{center}

*Defined as Rankin Scale score 4-5 or survey question response on requiring assistance for activities for daily living2
†Defined as less than 20/20 on the Barthel Index2
‡Data from North East Melbourne Stroke Incidence Study (NEMESIS). Due to different social, medical, and government support structures, there are limitations to the conclusions that can be applied for practice in the US\textsuperscript{3}

EFFECTS OF DISABILITY: LONG-TERM IMPACT OF STROKE

Potential disabilities in patients with ischemic stroke ≥65 years of age

PSYCHOLOGICAL IMPACT
- Depressive symptoms: 35%

PHYSICAL IMPACT
- Aphasia (impaired communication): 19%
- Hemiparesis (paralysis of one side of the body): 50%
- Inability to walk without some assistance: 30%

One in five strokes occurs in individuals under 55 years of age, and that proportion is increasing.2,3

*In a survey of patients older than 65 taken 6 months after ischemic stroke.

EMS MAKES A DIFFERENCE1-4

Benefits associated with 911 use vs private transport1-4

- EMS use is strongly associated with decreased time to initial physical examination
- EMS professionals are able to manage symptoms en route should they deteriorate
- EMS professionals are more aware as to which hospital is most appropriate

EMS-based educational programs have led to4,5:

- Growth in general stroke awareness
- An increase in public knowledge of stroke signs and symptoms
- A positive effect on stroke knowledge and behavior

Public education tools can be found at www.strokeawareness.com/hcp.

SUMMARY\(^1,2\)

Stroke is a leading cause of disability\(^1\)

✓ Stroke deficits can lead to disability and can have long-term impacts on both patient and caregiver

Stroke and the urgent need for treatment\(^2\)

✓ Less than half of 911 calls for stroke are made within the first hour of symptom onset

TEST YOURSELF!

Scenario: A 65-year-old woman collapses at a shopping mall
YOU COMPLETE THE EMS CALL

- Patient is in the emergency department (ED)
- ED has been briefed
- Paperwork for the call has been completed and filed
- You are preparing for your next EMS call

How do you close the feedback loop for this patient?
EMS CALL TO ACTION

• Know your regionally chosen prehospital stroke scales and routing protocols
• Know the stroke capabilities of your hospitals and ask for feedback
• Spread awareness: educate the community on signs and symptoms of stroke
BRAIN AREAS AND RELATED FUNCTIONS1-5

Clot location impacts symptoms based on associated neuroanatomy3

Frontal lobe1,2
- Control of mood, emotions, and thought
- Conveys emotion in speech, facial expressions, and gestures

Parietal lobe1,2
- Sensory perception

Occipital lobe1
- Occipitoparietal cortices mediate verbal and nonverbal material for immediate visual memory
- Occipitotemporal regions are used in object and facial recognition

Temporal lobe1,2
- Emotional modulation of memories
- Fear conditioning
- May store long-term autobiographical memory

Cerebellum1
- Refines force and timing of movement
- Contributes to coordinated stepping

Brain stem1,2,4,5
- Balance and locomotion
 - Initiation and speed of locomotion
 - Postural tone
 - Modulation of muscle-generated force

Insula1
- Language processing and function

\begin{itemize}
 \item Anterior cerebral artery (ACA)
 \item Posterior cerebral artery (PCA)
 \item Vertebobasilar cerebral system
 \item Middle cerebral artery (MCA)
\end{itemize}

Facial droop (have patient smile)
Normal: Both sides of face move equally
Abnormal: One side of face does not move as well

Arm drift (have patient hold arms out for 10 seconds)
Normal: Both arms move equally or not at all
Abnormal: One arm drifts compared with the other or does not move at all

Speech (have patient speak a simple sentence)
Normal: Patient uses correct words with no slurring
Abnormal: Slurred or inappropriate words or mute

LOS ANGELES PREHOSPITAL STROKE SCREEN (LAPSS) AND LOS ANGELES MOTOR SCALE (LAMS)1,2

LAPSS: Screening criteria1
- Age >45 years
- History of seizures or epilepsy absent
- Symptom duration <24 hours
- At baseline, patient is not wheelchair-bound or bedridden
- Blood glucose between 60 mg/dL and 400 mg/dL

LAMS2:

| Facial droop: | Absent – 0
| | Present – 1 |
| Arm drift: | Absent – 0
| | Drifts down – 1
| | Falls rapidly – 2 |
| Grip strength: | Normal – 0
| | Weak grip – 1
| | No grip – 2 |

- For regional systems of care in which EMS routes patients directly to the most appropriate facility, a LAMS score of \textgreater 4 may be used to route selected patients to comprehensive stroke centers

REFERENCES

REFERENCES (CONT.)

REFERENCES (CONT.)

REFERENCES (CONT.)

REFERENCES (CONT.)

